

Symbol	Parameter	Ratings	Units	
V _{DSS}	Drain to Source Voltage		150	V
V _{GS}	Gate to Source Voltage		±20	V
I _D	Drain Current - Continuous (V _{GS} =10) (Note 1)	T _C =25°C	35	•
	Pulsed Drain Current	T _C = 25°C	See Figure4	Α
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	78	mJ
-	Power Dissipation		150	W
P _D	Derate above 25°C		1.0	W/ºC
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 175	°C
$R_{\theta JC}$	Thermal Resistance Junction to Case		1.0	°C/W
$R_{\theta JA}$	Maximum Thermal Resistance Junction to Ambient	(Note 3)	43	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB42AN15A0	FDB42AN15A0-F085	D2-PAK(TO-263)	330mm	24mm	800 units

Notes:

1: Current is limited by bondwire configuration.

2: Starting T_J = 25°C, L = 0.2mH, I_{AS} = 28A, V_{DD} = 100V during inductor charging and V_{DD} = 0V during time in avalanche 3: $R_{\theta,JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,JA}$ is determined by the user's board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

Off Cha		Test Conditions		Min	Тур	Max	Units
	racteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V ₀	_{GS} = 0V	150	-	-	V
I _{DSS}	Drain to Source Leakage Current	V _{DS} =150V, V _{GS} = 0V	$T_{J} = 25^{\circ}C$ $T_{J} = 175^{\circ}C(Note 4)$	-	-	1 1	μA mA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$	<u> </u>	-	-	±100	nA
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D$		2.0	3.0 36	4.0 42	V
Vaanus	Gate to Source Threshold Voltage	$V_{ab} = V_{ab}$	= 2504	2.0	3.0	4.0	V
r _{DS(on)}	Drain to Source On Resistance	I _D = 12A, V _{GS} = 10V	$T_{J} = 25^{\circ}C$ $T_{J} = 175^{\circ}C(Note 4)$	-	36 89	42	mΩ mΩ
	c Characteristics						
	c Characteristics						
Dynami	c Characteristics	V - 25V/V	- 0)/	-	2040	-	pF
Dynami C _{iss}		V _{DS} = 25V, V _C f = 1MHz	_{-S} = 0V,	-	2040 216	-	pF pF
Dynami C _{iss} C _{oss}	Input Capacitance		_S = 0V,	-			
Dynami C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance			- - -	216		pF
Dynami C _{iss} C _{oss} C _{rss} R _g	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$f = 1MHz$ $f = 1MHz$ $V_{GS} = 0 \text{ to } 10^{10}$	-	-	216 48		pF pF
Dynami C _{iss} C _{oss} C _{rss} R _g Q _{g(ToT)}	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance	f = 1MHz f = 1MHz	-		216 48 1		pF pF Ω
	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Total Gate Charge at 10V	$f = 1MHz$ $f = 1MHz$ $V_{GS} = 0 \text{ to } 10^{10}$	/V _{DD} = 75V	- - -	216 48 1 30	- - - 36	pF pF Ω nC

Drain-Source Diode Characteristics

Fall Time

Turn-Off Time

V_{SD}	Source to Drain Diode Voltage	I _{SD} = 12A, V _{GS} = 0V	-	-	1.25	V
		I _{SD} = 6A, V _{GS} = 0V	-	-	1.2	V
T _{rr}	Reverse Recovery Time	I _F = 12A, dI _{SD} /dt = 100A/μs,	-	67	72	ns
Q _{rr}	Reverse Recovery Charge	V _{DD} =120V	-	193	222	nC

3

-

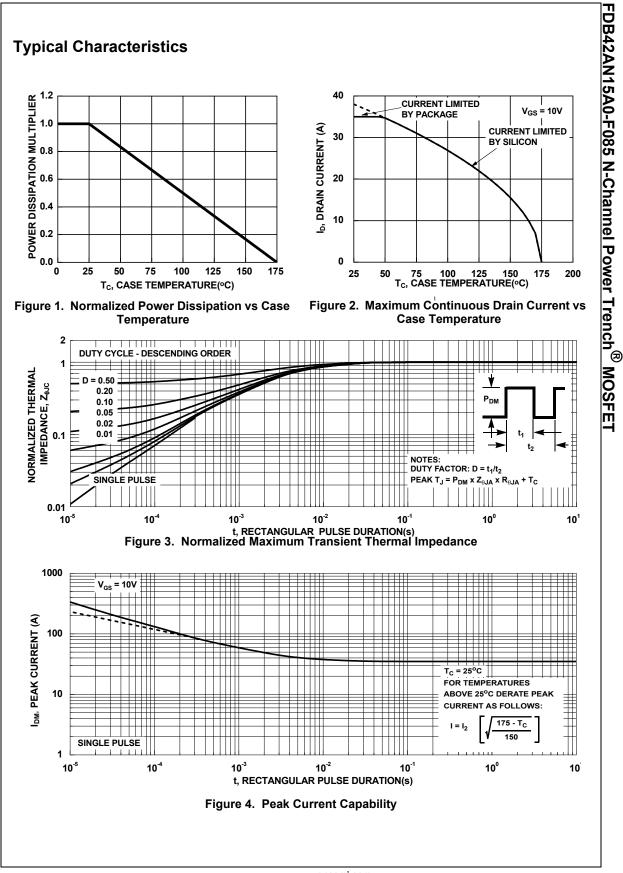
-

29

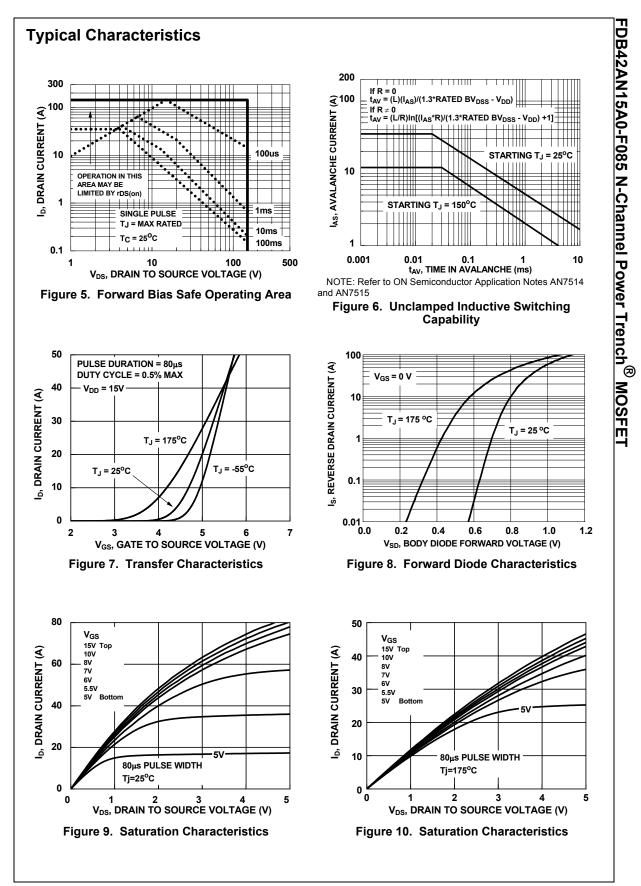
ns

ns

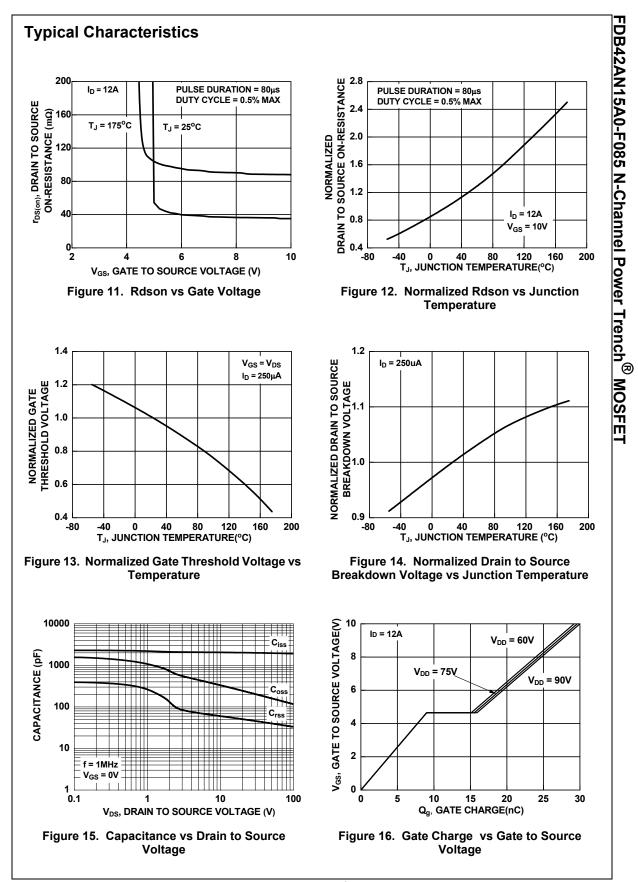
-


-

Notes:


t_f

t_{off}


4: The maximum value is specified by design at T_J = 175°C. Product is not tested to this condition in production.

www.onsemi.com 3

www.onsemi.com 4

www.onsemi.com 5

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FDP42AN15A0