
Jameco Part Number 670653

IRF9640

HEXFET[®] Power MOSFET

International

- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- P-Channel
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements

$$V_{DSS} = -200V$$
$$R_{DS(on)} = 0.50\Omega$$
$$I_{D} = -11A$$

Description

Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

STORE TO A
TO-220AB

Absolute Maximum Ratings

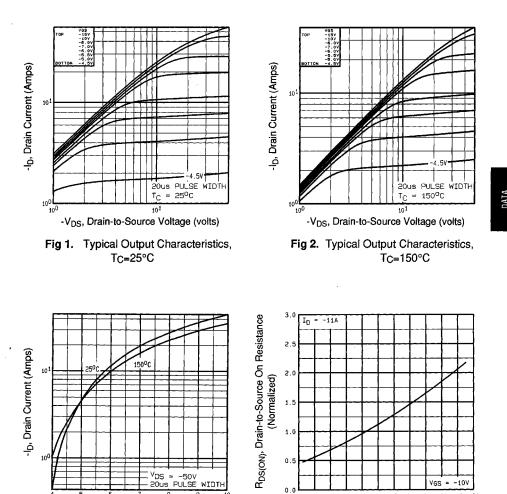
	Parameter	Max.	Units		
I _D @ T _C = 25°C	Continuous Drain Current, VGS @ -10 V	-11			
I _D @ T _C = 100°C	Continuous Drain Current, VGS @ -10 V	-6.8	A		
IDM	Pulsed Drain Current ①	-44			
P _D @ T _C = 25°C	Power Dissipation	125	W		
	Linear Derating Factor	1.0	W/ºC		
V _{GS}	Gate-to-Source Voltage	±20	V		
E _{AS}	Single Pulse Avalanche Energy 2	700	mJ		
ÍAR	Avalanche Current ①	-11	A		
EAR	Repetitive Avalanche Energy ①	13	mJ		
dv/dt	Peak Diode Recovery dv/dt ③	-5.0	V/ns		
Tj	Operating Junction and	-55 to +150			
TSTG	Storage Temperature Range		°C		
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)			
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1 N•m)			

Thermal Resistance

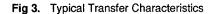
[Parameter	Min.	Тур.	Max.	Units
Rejc	Junction-to-Case			1.0	
Recs	Case-to-Sink, Flat, Greased Surface	—	0.50	—	°C/W
R _{eja}	Junction-to-Ambient	_	-	62	

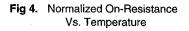
383

[Parameter	Min.	Тур.	Max.	Units	Test Conditions
V(BR)DSS	Drain-to-Source Breakdown Voltage	-200		_	V	V _{GS} =0V, I _D =-250μA
ΔV(BR)DSS/ΔTJ	Breakdown Voltage Temp. Coefficient	-	-0.20	_	V/°C	Reference to 25°C, Ip=-1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance	_	—	0.50	Ω	V _{GS} =-10V, I _D =-6.6A ④
V _{GS(th)}	Gate Threshold Voltage	-2.0	_	-4.0	V	V _{DS} =V _{GS} , I _D =-250μA
g ts	Forward Transconductance	4.1	—	_	S	V _{DS} =-50V, I _D =-6.6A ④
IDSS	Drain-to-Source Leakage Current		—	-100	μA	V _{DS} =-200V, V _{GS} =0V
1085				-500	μΛ	V _{DS} =-160V, V _{GS} =0V, T _J =125°C
Igss	Gate-to-Source Forward Leakage			-100	nA	V _{GS} =-20V
1655	Gate-to-Source Reverse Leakage			100		V _{GS} =20V
Qg	Total Gate Charge		-	44		I _D =-11A
Q _{gs}	Gate-to-Source Charge			7.1	nC	V _{DS} =-160V
Q _{gd}	Gate-to-Drain ("Miller") Charge			27		V _{GS} =-10V See Fig. 6 and 13 ④
t _{d(on)}	Turn-On Delay Time		14			V _{DD} =-100V
tr	Rise Time	—	43	—	ns	I _D ≕-11A
t _{d(off)}	Turn-Off Delay Time	_	39	—		R _G =9.1Ω
tr	Fall Time	_	38			R _D =8.6Ω See Figure 10 ④
LD	Internal Drain Inductance	_	4.5	_	nH	Between lead, 6 mm (0.25in.)
Ls	Internal Source Inductance		7.5	_	11173	from package and center of die contact
Ciss	Input Capacitance	_	1200			V _{GS} =0V
Coss	Output Capacitance		370	_	pF	V _{DS} =-25V
Crss	Reverse Transfer Capacitance	_	81			f=1.0MHz See Figure 5


Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

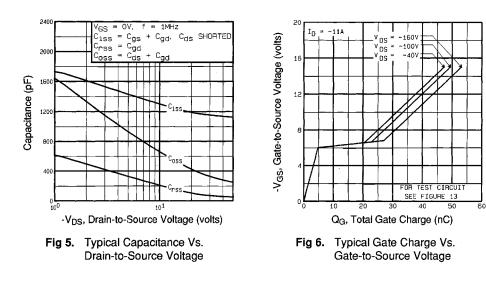
Source-Drain Ratings and Characteristics

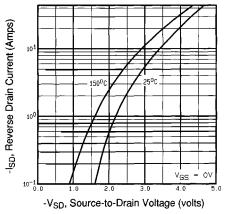

_	Parameter	Min.	Typ.	Max.	Units	Test Conditions	
Is	Continuous Source Current (Body Diode)	_		-11		MOSFET symbol showing the	
ISM	Pulsed Source Current (Body Diode) ①	-	-	-44	A	integral reverse p-n junction diode.	
VSD	Diode Forward Voltage	-		-5.0	V	TJ=25°C, IS=-11A, VGS=0V @	
trr	Reverse Recovery Time		250	300	ns	T_=25°C, I==-11A	
Qrr	Reverse Recovery Charge		2.9	3.6	μC	di/dt=100A/µs ⊛	
ton	Forward Turn-On Time	Intrinsi	Intrinsic turn-on time is neglegible (turn-on is dominated by Ls+LD)				

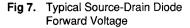

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature (See Figure 11)
- (\strut) Isp<-11A, di/dt
≤150A/µs, V_DD≤V(BR)DSS, TJ≤150°C
- ② V_{DD}=-50V, starting T_J=25°C, L=8.7mH R_G=25Ω, I_{AS}=-11A (See Figure 12)
- ④ Pulse width \leq 300 µs; duty cycle \leq 2%.

-VGS, Gate-to-Source Voltage (volts)


T_J, Junction Temperature (°C)


120 140 160


-40 -20 0 20 40 50 80 100

-60

10

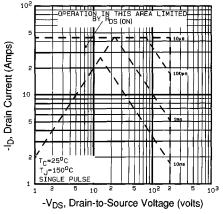
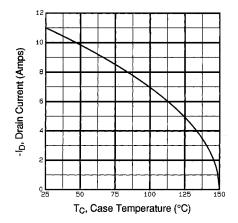
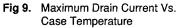




Fig 8. Maximum Safe Operating Area

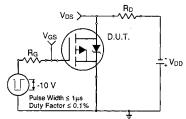


Fig 10a. Switching Time Test Circuit



Fig 10b. Switching Time Waveforms

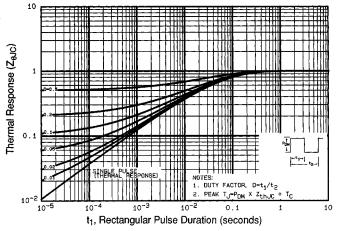


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRF9640

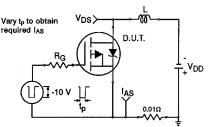


Fig 12a. Unclamped Inductive Test Circuit

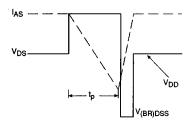
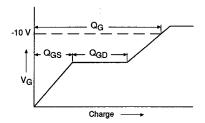
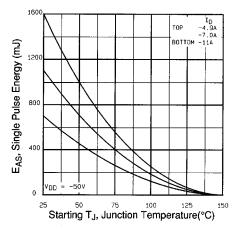


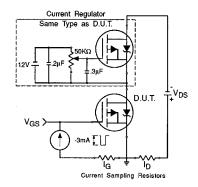
Fig 12b. Unclamped Inductive Waveforms

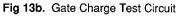



Fig 13a. Basic Gate Charge Waveform

Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit - See page 1506

Appendix B: Package Outline Mechanical Drawing - See page 1509


Appendix C: Part Marking Information - See page 1516


Appendix E: Optional Leadforms - See page 1525

IC2

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

International

388