

6-Pin DIP Zero-Cross Optoisolators Triac Driver Output (800 Volts Peak)

The MOC3081, MOC3082 and MOC3083 devices consist of gallium arsenide infrared emitting diodes optically coupled to monolithic silicon detectors performing the function of Zero Voltage Crossing bilateral triac drivers.

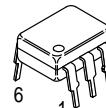
They are designed for use with a triac in the interface of logic systems to equipment powered from 240 Vac lines, such as solid-state relays, industrial controls, motors, solenoids and consumer appliances, etc.

- Simplifies Logic Control of 240 Vac Power
- Zero Voltage Crossing
- dv/dt of 1500 V/μs Typical, 600 V/μs Guaranteed
- *To order devices that are tested and marked per VDE 0884 requirements, the suffix "V" must be included at end of part number. VDE 0884 is a test option.*

Recommended for 240 Vac(rms) Applications:

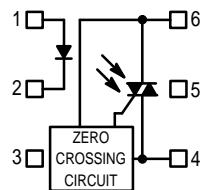
- Solenoid/Valve Controls
- Lighting Controls
- Static Power Switches
- AC Motor Drives
- Temperature Controls
- E.M. Contactors
- AC Motor Starters
- Solid State Relays

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
INPUT LED			
Reverse Voltage	V _R	6	Volts
Forward Current — Continuous	I _F	60	mA
Total Power Dissipation @ T _A = 25°C Negligible Power in Output Driver Derate above 25°C	P _D	120	mW
		1.41	mW/°C
OUTPUT DRIVER			
Off-State Output Terminal Voltage	V _{DRM}	800	Volts
Peak Repetitive Surge Current (PW = 100 μs, 120 pps)	I _{TSM}	1	A
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	150	mW
		1.76	mW/°C

TOTAL DEVICE

Isolation Surge Voltage ⁽¹⁾ (Peak ac Voltage, 60 Hz, 1 Second Duration)	V _{ISO}	7500	Vac(pk)
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	250 2.94	mW mW/°C
Junction Temperature Range	T _J	-40 to +100	°C
Ambient Operating Temperature Range	T _A	-40 to +85	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C
Soldering Temperature (10 s)	T _L	260	°C


1. Isolation surge voltage, V_{ISO}, is an internal device dielectric breakdown rating.
For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.

**MOC3081
MOC3082
MOC3083**

STANDARD THRU HOLE

COUPLER SCHEMATIC

1. ANODE
2. CATHODE
3. NC
4. MAIN TERMINAL
5. SUBSTRATE
DO NOT CONNECT
6. MAIN TERMINAL

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
INPUT LED					
Reverse Leakage Current ($V_R = 6\text{ V}$)	I_R	—	0.05	100	μA
Forward Voltage ($I_F = 30\text{ mA}$)	V_F	—	1.3	1.5	Volts
OUTPUT DETECTOR ($I_F = 0$)					
Leakage with LED Off, Either Direction ($V_{DRM} = 800\text{ V}$ ⁽¹⁾)	I_{DRM1}	—	80	500	nA
Critical Rate of Rise of Off-State Voltage ⁽³⁾	dv/dt	600	1500	—	$\text{V}/\mu\text{s}$
COUPLED					
LED Trigger Current, Current Required to Latch Output (Main Terminal Voltage = 3 V ⁽²⁾)	I_{FT}	—	—	15	mA
MOC3081		—	—	10	
MOC3082		—	—	5	
MOC3083		—	—	—	
Peak On-State Voltage, Either Direction ($I_{TM} = 100\text{ mA}$, $I_F = \text{Rated } I_{FT}$)	V_{TM}	—	1.8	3	Volts
Holding Current, Either Direction	I_H	—	250	—	μA
Inhibit Voltage (MT1-MT2 Voltage above which device will not trigger) ($I_F = \text{Rated } I_{FT}$)	V_{INH}	—	5	20	Volts
Leakage in Inhibited State ($I_F = \text{Rated } I_{FT}$, $V_{DRM} = 800\text{ V}$, Off State)	I_{DRM2}	—	300	500	μA

1. Test voltage must be applied within dv/dt rating.
2. All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT} . Therefore, recommended operating I_F lies between max I_{FT} (15 mA for MOC3081, 10 mA for MOC3082, 5 mA for MOC3083) and absolute max I_F (60 mA).
3. This is static dv/dt . See Figure 7 for test circuit. Commutating dv/dt is a function of the load-driving thyristor(s) only.

TYPICAL CHARACTERISTICS

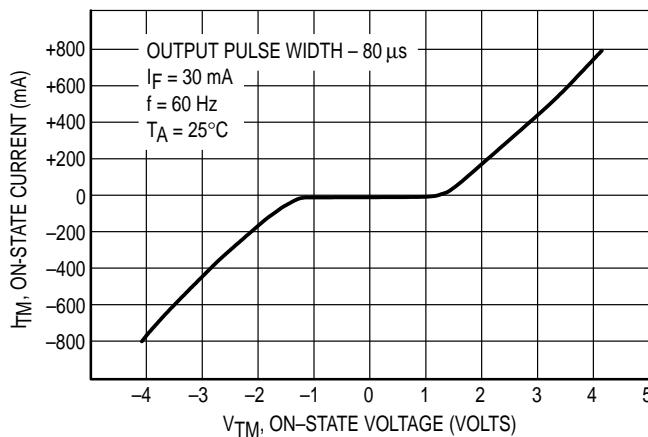
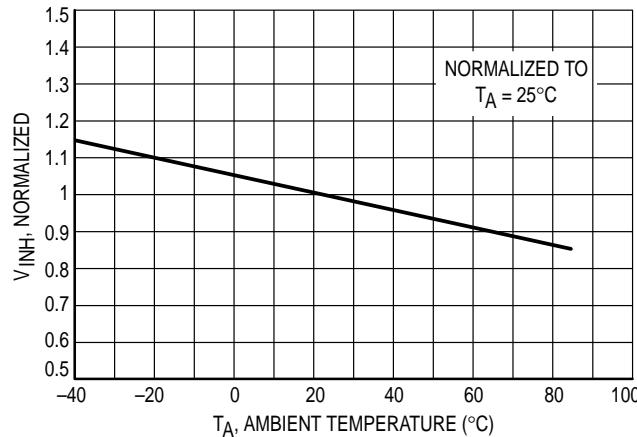
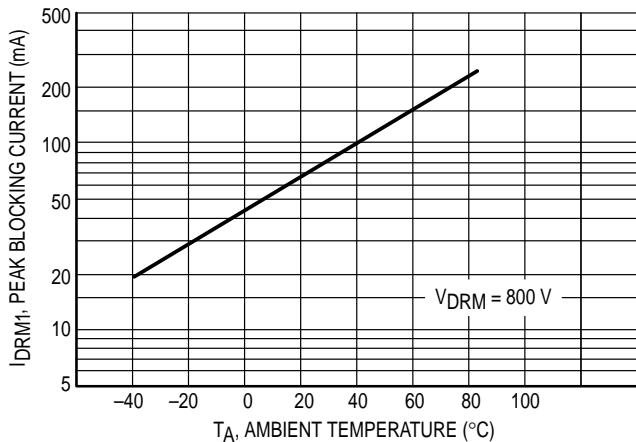
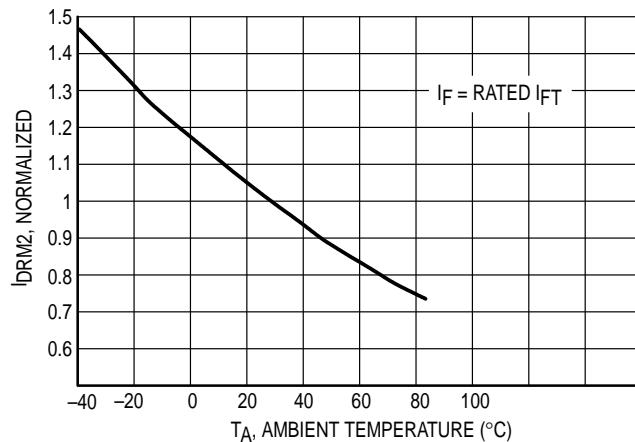
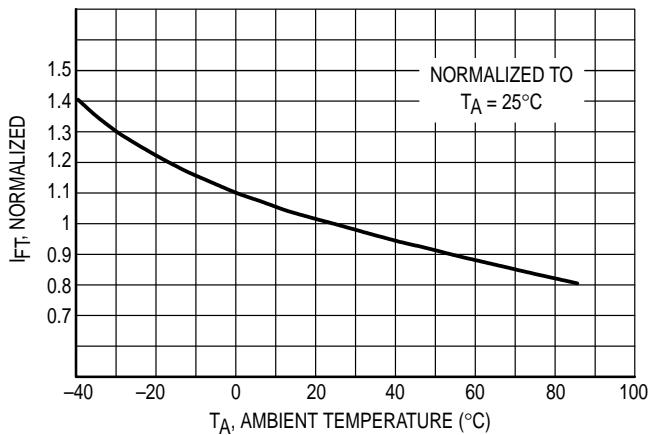
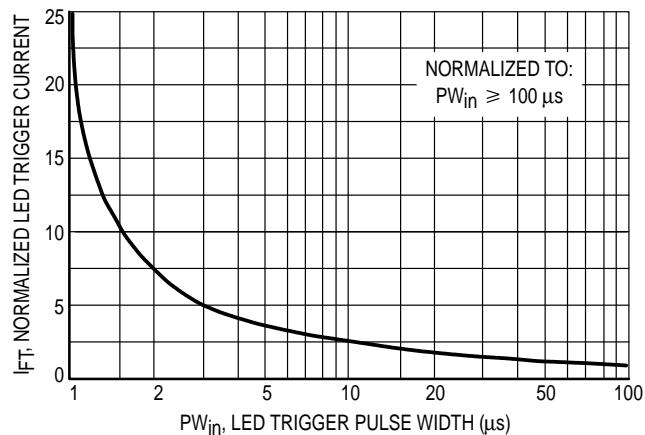


Figure 1. On-State Characteristics


Figure 2. Inhibit Voltage versus Temperature


**Figure 3. Leakage with LED Off
versus Temperature**

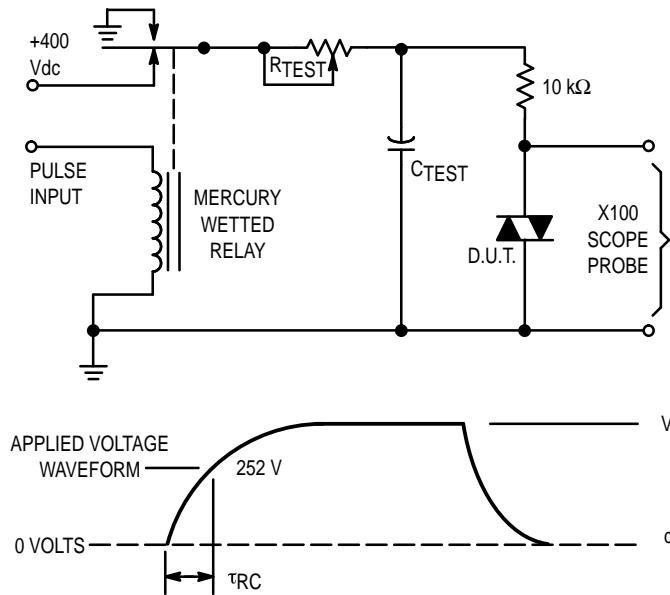
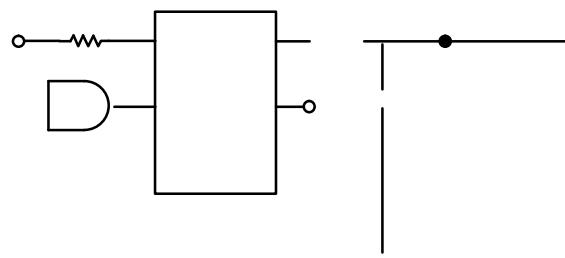
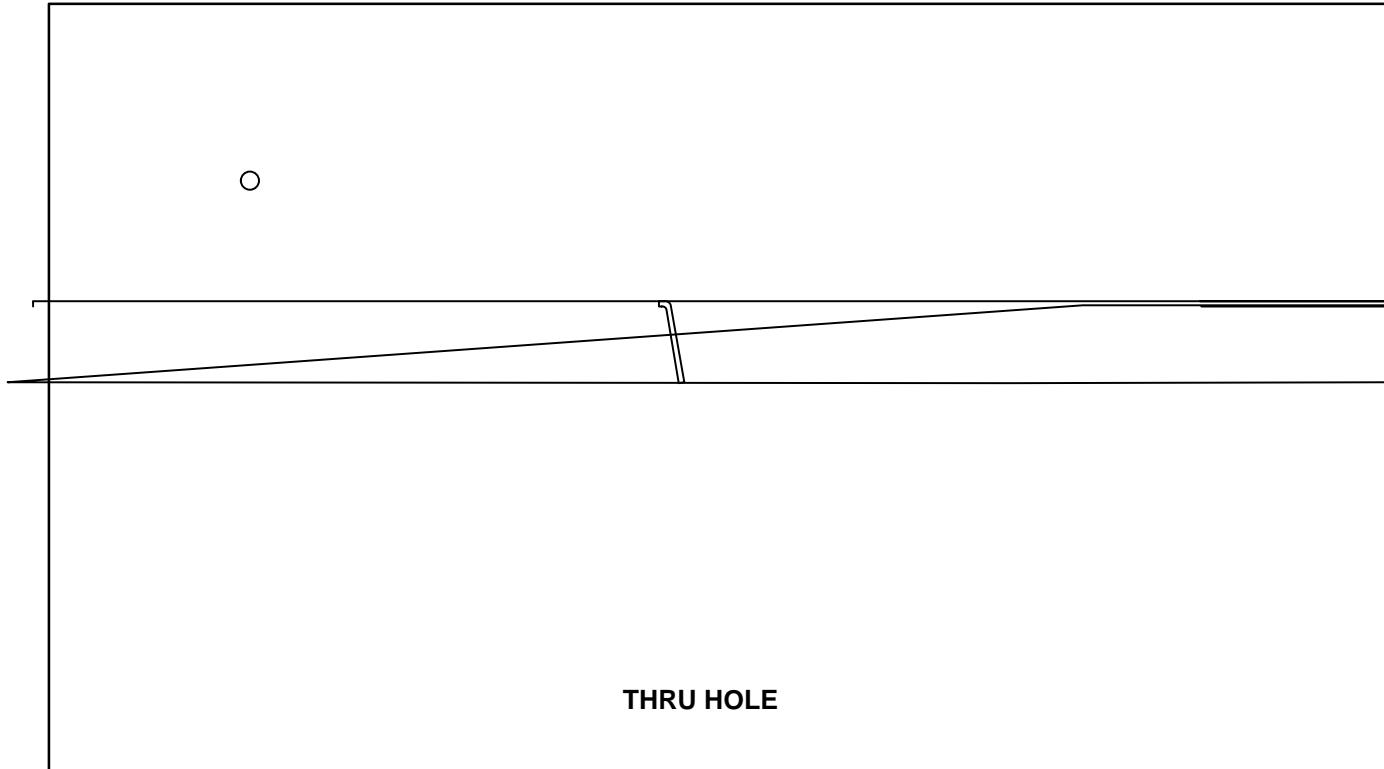
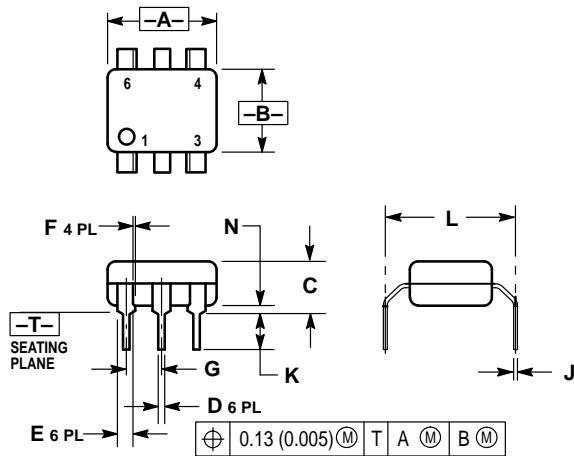

**Figure 4. IDRM2, Leakage in Inhibit State
versus Temperature**

Figure 5. Trigger Current versus Temperature


**Figure 6. LED Current Required to Trigger
versus LED Pulse Width**


Figure 7. Static dv/dt Test Circuit


1. The mercury wetted relay provides a high speed repeated pulse to the D.U.T.
2. 100x scope probes are used, to allow high speeds and voltages.
3. The worst-case condition for static dv/dt is established by triggering the D.U.T. with a normal LED input current, then removing the current. The variable R_{TEST} allows the dv/dt to be gradually increased until the D.U.T. continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the D.U.T. stops triggering. τ_{RC} is measured at this point and recorded.

$$dv/dt = 0.63 V_{max} / \tau_{RC} = 504 / \tau_{RC}$$

PACKAGE DIMENSIONS

NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.320	0.350	8.13	8.89
B	0.240	0.260	6.10	6.60
C	0.115	0.200	2.93	5.08
D	0.016	0.020	0.41	0.50
E	0.040	0.070	1.02	1.77
F	0.010	0.014	0.25	0.36
G	0.100	BSC	2.54	BSC
J	0.008	0.012	0.21	0.30
K	0.100	0.150	2.54	3.81
L	0.400	0.425	10.16	10.80
N	0.015	0.040	0.38	1.02

0.4" LEAD SPACING

;

;

, .2 .) 0 1 1) 2)
, 1 , , 1)
2) 1 2 1 0 , 2)
1 0)

Contents

[General description](#) | [Applications](#) | [Ordering information](#) | [Product status/pricing/packaging](#) | [Safety agency certificates](#)

General description

The MOC3081, MOC3082 and MOC3083 devices consist of a gallium arsenide infrared emitting diodes optically coupled to a monolithic silicon detectors performing the functions of zero voltage crossing bilateral triac drivers.

They are designed for use with a triac in the interface of logic systems to equipment powered from 240 Vac lines, such as solid state relays, industrial controls, motors, solenoids and consumer appliances, etc. Simplifies logic control of 240 Vac power Zero voltage crossing dv/dt of 1500 V/μs typical, 600 V/μs guaranteed.

[back to top](#)

Applications

Recommended for 115/240 Vac rms)

- Solenoid/Valve Controls
- Lighting controls
- Static power switches
- AC motor drives
- Temperature controls
- E.M. contractors
- AC motor starters

Related Links

[Request samples](#)[Dotted line](#)[How to order products](#)[Dotted line](#)[Product Change Notices](#)[\(PCNs\)](#)[Dotted line](#)[Support](#)[Dotted line](#)[Distributor and field sales representatives](#)[Dotted line](#)[Quality and reliability](#)[Dotted line](#)[Design tools](#)[Datasheet](#)[Download this datasheet](#)[e-mail this datasheet](#)[This page](#)[Print version](#)

[back to top](#)

Safety agency certificates

Cetificate	Agency	
310983-01 (95 K)	DEMKO	DEMKO Testing & Certification
P01101866 (383 K)	NEMKO	NEMKO
CR/0117 (424 K)	BABT	British Approvals Board of Telecommunications
102497 (1629 K)	VDE	VDE Pruf-und Zertifizierungsinstitut
1113639 (111 K)	CSA	Canadian Standards Association
0134082 (136 K)	SEMKO	SEMKO
FI 17434 (47 K)	FIMKO	FIMKO
E90700, Vol. 2 (254 K)	UL	Underwriters Laboratories Inc.

[back to top](#)

[Home](#) | [Find products](#) | [Technical information](#) | [Buy products](#) |
[Support](#) | [Company](#) | [Contact us](#) | [Site index](#) | [Privacy policy](#)

[© Copyright 2002 Fairchild Semiconductor](#)

Last updated: April 7, 2002

find products

[Products groups](#)
[Analog and Mixed](#)
[Signal](#)
[Discrete](#)
[Interface](#)
[Logic](#)
[Microcontrollers](#)
[Non-Volatile](#)
[Memory](#)
[Optoelectronics](#)
[Markets and](#)
[applications](#)
[New products](#)
[Product selection and](#)
[parametric search](#)
[Cross-reference](#)
[search](#)

[technical information](#)

[buy products](#)

[technical support](#)

[my Fairchild](#)

[company](#)

[SEARCH](#) | [Parametric](#) | [Cross Reference](#)

[space](#)

[Product Folders and](#)

[Applications](#)

[Home](#) >> [Find products](#) >>

MOC3082-M
6-Pin 800V Zero Crossing Triac Driver Output Coupler

Contents

[General description](#) | [Applications](#) | [Ordering information](#) | [Product status/pricing/packaging](#) | [Safety agency certificates](#)

General description

The MOC3081, MOC3082 and MOC3083 devices consist of a gallium arsenide infrared emitting diodes optically coupled to a monolithic silicon detectors performing the functions of zero voltage crossing bilateral triac drivers.

They are designed for use with a triac in the interface of logic systems to equipment powered from 240 Vac lines, such as solid state relays, industrial controls, motors, solenoids and consumer appliances, etc. Simplifies logic control of 240 Vac power Zero voltage crossing dv/dt of 1500 V/μs typical, 600 V/μs guaranteed.

[back to top](#)

Applications

Recommended for 115/240 Vac rms)

- Solenoid/Valve Controls
- Lighting controls
- Static power switches
- AC motor drives
- Temperature controls
- E.M. contractors
- AC motor starters

Related Links

[Request samples](#)

[Dotted line](#)

[How to order products](#)

[Dotted line](#)

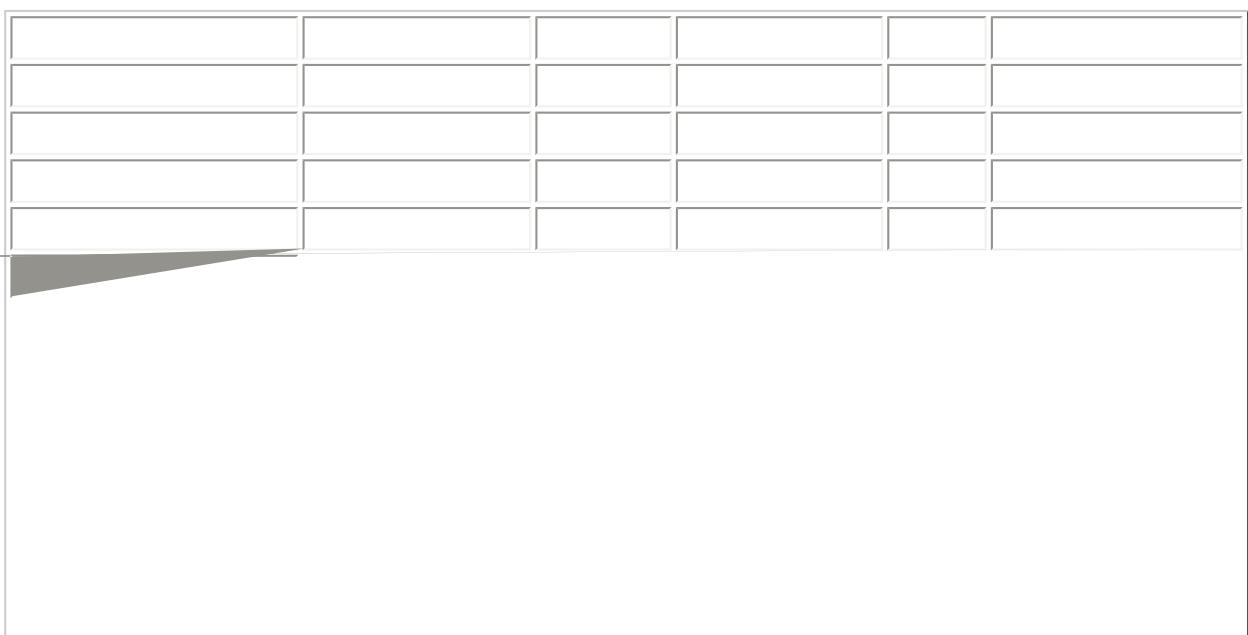
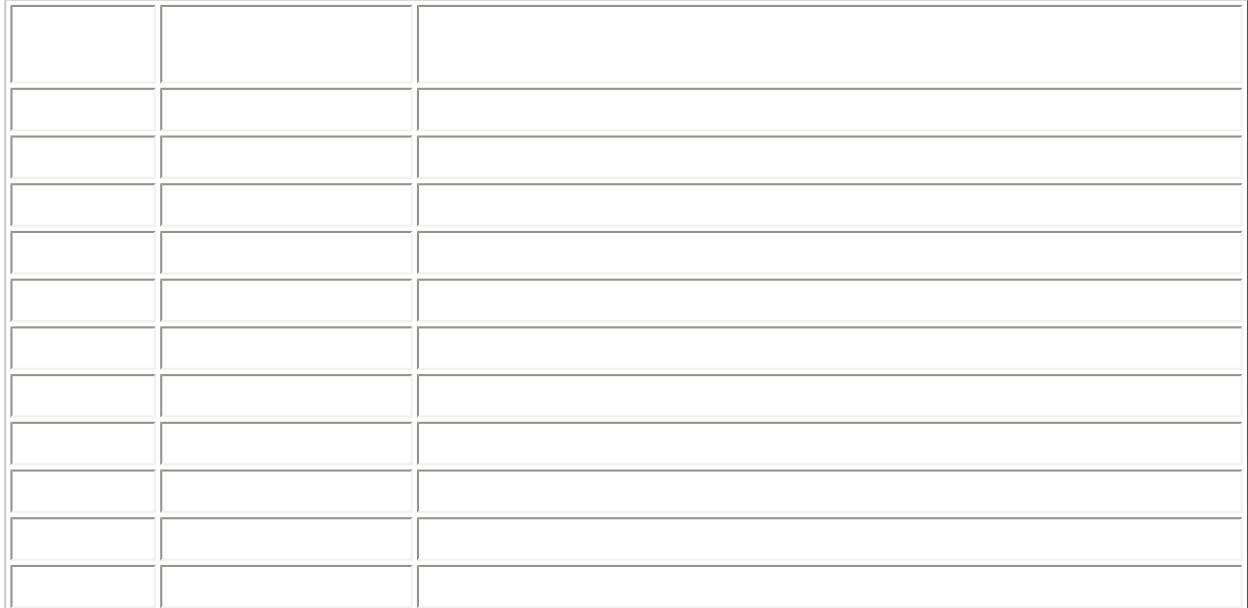
[Product Change Notices](#)

[\(PCNs\)](#)

[Dotted line](#)

[Support](#)

[Dotted line](#)



[Distributor and field sales representatives](#)

[Dotted line](#)

[Quality and reliability](#)

[Dotted line](#)

[Design tools](#)

[back to top](#)

Safety agency certificates

Cetificate	Agency	
310983-01 (95 K)	DEMKO	DEMKO Testing & Certification
P01101866 (383 K)	NEMKO	NEMKO
CR/0117 (424 K)	BABT	British Approvals Board of Telecommunications
102497 (1629 K)	VDE	VDE Pruf-und Zertifizierungsinstitut
1113639 (111 K)	CSA	Canadian Standards Association
0134082 (136 K)	SEMKO	SEMKO
FI 17434 (47 K)	FIMKO	FIMKO
E90700, Vol. 2 (254 K)	UL	Underwriters Laboratories Inc.

[back to top](#)

[Home](#) | [Find products](#) | [Technical information](#) | [Buy products](#) |
[Support](#) | [Company](#) | [Contact us](#) | [Site index](#) | [Privacy policy](#)

[© Copyright 2002 Fairchild Semiconductor](#)

Last updated: April 7, 2002

find products

[Products groups](#)
[Analog and Mixed](#)
[Signal](#)
[Discrete](#)
[Interface](#)
[Logic](#)
[Microcontrollers](#)
[Non-Volatile](#)
[Memory](#)
[Optoelectronics](#)
[Markets and](#)
[applications](#)
[New products](#)
[Product selection and](#)
[parametric search](#)
[Cross-reference](#)
[search](#)

[technical information](#)

[buy products](#)

[technical support](#)

[my Fairchild](#)

[company](#)

[SEARCH](#) | [Parametric](#) | [Cross Reference](#)

[space](#)

[Product Folders and](#)

[Applications](#)

[Home](#) >> [Find products](#) >>

MOC3083-M
6-Pin 800V Zero Crossing Triac Driver Output Coupler

Contents

[General description](#) | [Applications](#) | [Ordering information](#) | [Product status/pricing/packaging](#) | [Safety agency certificates](#)

General description

The MOC3081, MOC3082 and MOC3083 devices consist of a gallium arsenide infrared emitting diodes optically coupled to a monolithic silicon detectors performing the functions of zero voltage crossing bilateral triac drivers.

They are designed for use with a triac in the interface of logic systems to equipment powered from 240 Vac lines, such as solid state relays, industrial controls, motors, solenoids and consumer appliances, etc. Simplifies logic control of 240 Vac power Zero voltage crossing dv/dt of 1500 V/μs typical, 600 V/μs guaranteed.

[back to top](#)

Applications

Recommended for 115/240 Vac rms)

- Solenoid/Valve Controls
- Lighting controls
- Static power switches
- AC motor drives
- Temperature controls
- E.M. contractors
- AC motor starters

Related Links

[Request samples](#)

[Dotted line](#)

[How to order products](#)

[Dotted line](#)

[Product Change Notices](#)

[\(PCNs\)](#)

[Dotted line](#)

[Support](#)

[Dotted line](#)

[Distributor and field sales representatives](#)

[Dotted line](#)

[Quality and reliability](#)

[Dotted line](#)

[Design tools](#)

[Datasheet](#)

[Download this datasheet](#)

[e-mail this datasheet](#)

[This page](#)

[Print version](#)

[back to top](#)

Safety agency certificates

Cetificate	Agency	
310983-01 (95 K)	DEMKO	DEMKO Testing & Certification
P01101866 (383 K)	NEMKO	NEMKO
CR/0117 (424 K)	BABT	British Approvals Board of Telecommunications
102497 (1629 K)	VDE	VDE Pruf-und Zertifizierungsinstitut
1113639 (111 K)	CSA	Canadian Standards Association
0134082 (136 K)	SEMKO	SEMKO
FI 17434 (47 K)	FIMKO	FIMKO
E90700, Vol. 2 (254 K)	UL	Underwriters Laboratories Inc.

[back to top](#)

[Home](#) | [Find products](#) | [Technical information](#) | [Buy products](#) |
[Support](#) | [Company](#) | [Contact us](#) | [Site index](#) | [Privacy policy](#)

[© Copyright 2002 Fairchild Semiconductor](#)

Last updated: April 7, 2002

Select a product number to download its datasheet in PDF format ([Adobe Acrobat Reader](#) required). A **-M** suffix indicates a former Motorola product.

Contents

[4N](#) | [CNY](#) | [H11](#) | [MCT](#) | [MOC](#) |

Datasheets for products beginning with 4N

4N25-M	4N25A-M obsoleted, no replacement	4N26-M
4N27-M	4N28-M	4N29-M replaced by 4N29
4N29A-M replaced by 4N29	4N30-M replaced by 4N30	4N31-M replaced by 4N31
4N32-M replaced by 4N32	4N33-M replaced by 4N33	4N35-M
4N36-M	4N37-M	4N38-M replaced by 4N38
4N38A-M replaced by 4N38		

[back to top](#)

Datasheets for products beginning with CNY

[CNY17-1-M](#) | [CNY17-2-M](#) | [CNY17-3-M](#)

[back to top](#)

Datasheets for products beginning with H11

[H11A1-M](#) | H11AA1-M replaced
by [H11AA1](#) | H11AA2-M replaced
by [H11AA2](#)

Related links

[6 pin black/white package
comparison](#)

[Request samples](#)

[Buy products](#)

[Optocoupler products](#)

[Optoelectronics products](#)

[Contact us](#)

H11AA3-M replaced by H11AA3	H11AA4-M replaced by H11AA4	H11AV1-M
H11AV1A-M	H11AV2-M	H11AV2A-M
H11B1-M replaced by H11B1	H11B3-M replaced by H11B3	H11D1-M replaced by H11D1
H11D2-M replaced by H11D2	H11G1-M replaced by H11G1	H11G2-M replaced by H11G2
H11G3-M replaced by H11G3	H11L1-M	H11L2-M
H11L3-M		

[back to top](#)

▪
Datasheets for products beginning with MCT

MCT2-M	MCT2E-M	
------------------------	-------------------------	--

[back to top](#)

▪
Datasheets for products beginning with MOC

MOC205-M	MOC206-M	MOC207-M
MOC208-M	MOC211-M	MOC212-M
MOC213-M	MOC215-M	MOC216-M
MOC217-M	MOC223-M	MOC256-M
MOC3010-M	MOC3011-M	MOC3012-M
MOC3020-M	MOC3021-M	MOC3022-M
MOC3023-M	MOC3031-M	MOC3032-M
MOC3033-M	MOC3041-M	MOC3042-M
MOC3043-M	MOC3051-M	MOC3052-M
MOC3061-M	MOC3062-M	MOC3063-M
MOC3081-M	MOC3081-M	MOC3083-M
MOC3162-M	MOC3163-M	MOC5007-M
MOC5008-M	MOC5009-M	MOC8030-M replaced by MOC8030

MOC8050-M replaced by MOC8050	MOC8080-M replaced by MOC8080	MOC8100-M
MOC8204-M replaced by MOC8204	MOCD207-M	MOCD208-M
MOCD211-M	MOCD213-M	MOCD217-M
MOCD223-M		

[back to top](#)

[Home](#) | [Find products](#) | [Technical information](#) | [Buy products](#) |
[Support](#) | [Company](#) | [Contact us](#) | [Site index](#) | [Privacy policy](#)

[© Copyright 2002 Fairchild Semiconductor](#)

Last updated: March 19, 2002