Switch-mode Power Rectifier

DPAK Surface Mount Package

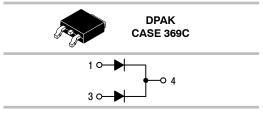
MURD620CT, NRVUD620CT, SRVUD620CT, SNRVUD620CT

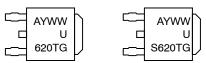
These state-of-the-art devices are designed for use in switching power supplies, inverters and as free wheeling diodes.

Features

- Ultrafast 35 Nanosecond Recovery Time
- Low Forward Voltage Drop
- Low Leakage
- ESD Rating:
 - ♦ Human Body Model = 3B (> 8 kV)
 - Machine Model = C (> 400 V)
- NRVUD, SRVUD and SNRVUD Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Mechanical Characteristics:


- Case: Epoxy, Molded
- Weight: 0.4 Gram (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds


ON Semiconductor®

www.onsemi.com

ULTRAFAST RECTIFIER 6.0 AMPERES 200 VOLTS

MARKING DIAGRAMS

A = Assembly Location*

Y = Year WW = Work Week

U620T = Device Code (MURD/NRVUD/

SNRVUD620CT)

US620T = Device Code (SRVUD620CT)

G = Pb-Free Package

* The Assembly Location Code (A) is front side optional. In cases where the Assembly Location is stamped in the package bottom (molding ejecter pin), the front side assembly code may be blank.

ORDERING INFORMATION

Device	Package	Shipping [†]
MURD620CTG	DPAK (Pb-Free)	75 Units / Rail
NRVUD620CTG	DPAK (Pb-Free)	75 Units / Rail
MURD620CTT4G	DPAK (Pb-Free)	2,500 / Tape & Reel
NRVUD620CTT4G	DPAK (Pb-Free)	2,500 / Tape & Reel
SRVUD620CTT4G	DPAK (Pb-Free)	2,500 / Tape & Reel
SNRVUD620CTT4G	DPAK (Pb-Free)	2,500 / Tape & Reel
NRVUD620CTG- VF01	DPAK (Pb-Free)	2,500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MURD620CT, NRVUD620CT, SRVUD620CT, SNRVUD620CT

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	V
Average Rectified Forward Current (T _C = 140°C) Per Diode Per Device	I _{F(AV)}	3.0 6.0	А
Peak Repetitive Forward Current (Square Wave, Duty = 0.5, T _C = 145°C) Per Diode	IF	6.0	А
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, 60 Hz)	I _{FSM}	50	Α
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C

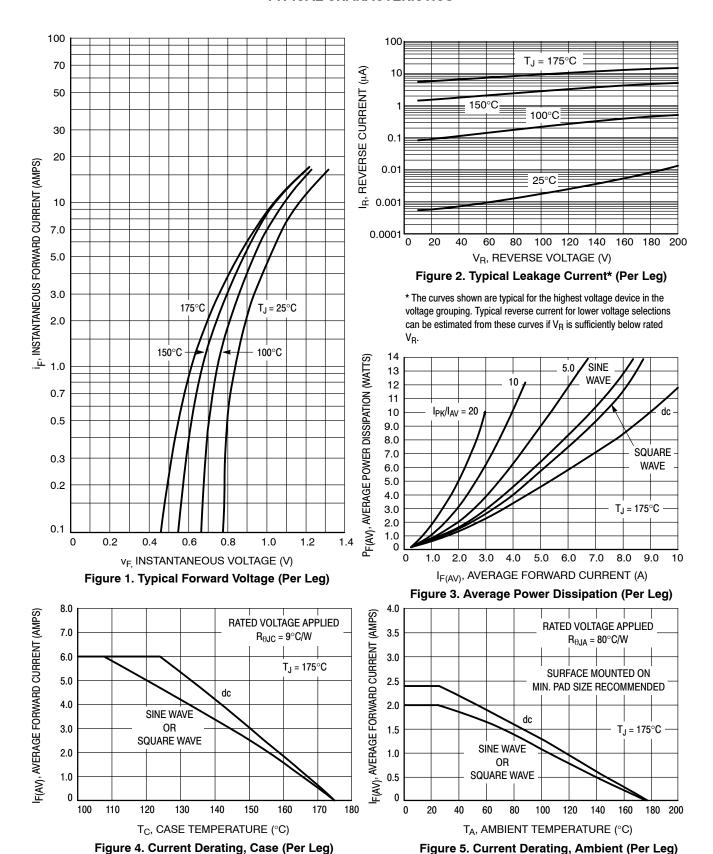
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS (Per Diode)

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	9	°C/W
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{\theta JA}$	80	°C/W

^{1.} Rating applies when surface mounted on the minimum pad sizes recommended.

ELECTRICAL CHARACTERISTICS (Per Diode)


Characteristic	Symbol	Value	Unit
$\label{eq:maximum Instantaneous Forward Voltage Drop (Note 2)} \begin{tabular}{l} (i_F = 3 \text{ Amps, } T_C = 25^{\circ}\text{C}) \\ (i_F = 3 \text{ Amps, } T_C = 125^{\circ}\text{C}) \\ (i_F = 6 \text{ Amps, } T_C = 25^{\circ}\text{C}) \\ (i_F = 6 \text{ Amps, } T_C = 125^{\circ}\text{C}) \\ \end{tabular}$	VF	1 0.96 1.2 1.13	V
Maximum Instantaneous Reverse Current (Note 2) (T _J = 25°C, Rated dc Voltage) (T _J = 125°C, Rated dc Voltage)	İR	5 250	μΑ
Maximum Reverse Recovery Time ($I_F=1$ Amp, $I_J=50$ Amps, $I_J=10$ Amp, $I_J=10$ Am	t _{rr}	35 25	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{2.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

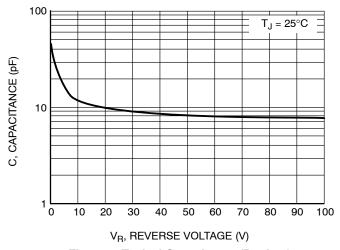
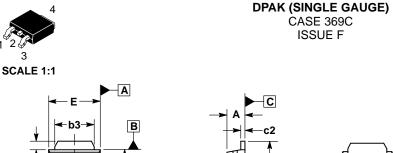
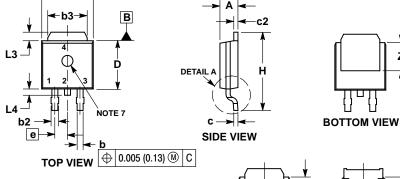
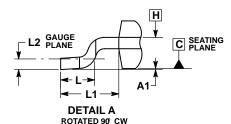
MURD620CT, NRVUD620CT, SRVUD620CT, SNRVUD620CT

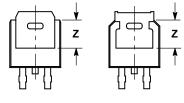
TYPICAL CHARACTERISTICS

www.onsemi.com

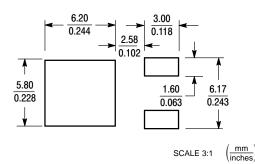
MURD620CT, NRVUD620CT, SRVUD620CT, SNRVUD620CT

TYPICAL CHARACTERISTICS


Figure 6. Typical Capacitance (Per Leg)

DATE 21 JUL 2015



BOTTOM VIEW ALTERNATE CONSTRUCTIONS

STYLE 1: PIN 1. BASE 2. COLLE 3. EMITTI 4. COLLE	ER 3. SOL	AIN 2. CATI JRCE 3. ANO	HODE 2. ANODE DE 3. GATE	STYLE 5: PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE
STYLE 6:	STYLE 7:	3. ANODE	STYLE 9:	STYLE 10:
PIN 1. MT1	PIN 1. GATE		PIN 1. ANODE	PIN 1. CATHODE
2. MT2	2. COLLECTOR		2. CATHODE	2. ANODE
3. GATE	3. EMITTER		3. RESISTOR ADJUST	3. CATHODE
4. MT2	4. COLLECTOR		4. CATHODE	4. ANODE

SOLDERING FOOTPRINT*

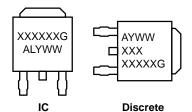
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

z

- IOTES. 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-

- MENSIONS b3, L3 and Z.


 Jimensions b And E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

 MENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

		INC	HES	MILLIM	IETERS
	DIM	MIN	MAX	MIN	MAX
	Α	0.086	0.094	2.18	2.38
	A1	0.000	0.005	0.00	0.13
	b	0.025	0.035	0.63	0.89
ĺ	b2	0.028	0.045	0.72	1.14
	b3	0.180	0.215	4.57	5.46
	С	0.018	0.024	0.46	0.61
	c2	0.018	0.024	0.46	0.61
	D	0.235	0.245	5.97	6.22
	Е	0.250	0.265	6.35	6.73
	е	0.090	BSC	2.29	BSC
	Н	0.370	0.410	9.40	10.41
	L	0.055	0.070	1.40	1.78
	L1	0.114	REF	2.90	REF
ĺ	L2	0.020	BSC	0.51	BSC
	L3	0.035	0.050	0.89	1.27
	L4		0.040		1.01
	Z	0.155		3.93	

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code = Assembly Location Α L = Wafer Lot Υ = Year

WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

DOCUMENT NUMBER:	98AON10527D	E
STATUS:	ON SEMICONDUCTOR STANDARD	a ve
NEW STANDARD:	REF TO JEDEC TO-252	"(
DESCRIPTION:	DPAK SINGLE GAUGE SURFACE MOU	NT

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

PAGE 1 OF 2

DOCUMENT	NUMBER:
98AON10527	7D

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION. REQ. BY L. GAN	24 SEP 2001
Α	ADDED STYLE 8. REQ. BY S. ALLEN.	06 AUG 2008
В	ADDED STYLE 9. REQ. BY D. WARNER.	16 JAN 2009
С	ADDED STYLE 10. REQ. BY S. ALLEN.	09 JUN 2009
D	RELABELED DRAWING TO JEDEC STANDARDS. ADDED SIDE VIEW DETAIL A. CORRECTED MARKING INFORMATION. REQ. BY D. TRUHITTE.	29 JUN 2010
E	ADDED ALTERNATE CONSTRUCTION BOTTOM VIEW. MODIFIED DIMENSIONS b2 AND L1. CORRECTED MARKING DIAGRAM FOR DISCRETE. REQ. BY I. CAMBALIZA.	06 FEB 2014
F	ADDED SECOND ALTERNATE CONSTRUCTION BOTTOM VIEW. REQ. BY K. MUSTAFA.	21 JUL 2015

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative